Engineering Thermodynamics

- 1.1 Course Number: CH161
- 1.2 Contact Hours: 3-1-0 Credits: 11
- 1.3 Semester -Offered: 1st Year-Odd
- 1.4 Prerequisite: Basic physics, mathematics (basic multivariable calculus).
- 1.5 Syllabus Committee Members: Dr. V S Sistla, Dr. A. Ranjan
- 2. OBJECTIVE:
 - > understand the laws of thermodynamics and how it is reflected in the systems under equilibrium, and the natural and engineered processes.
 - > understand the way the laws of thermodynamics govern chemical transformations.
 - > understand how to calculate the thermodynamic properties of the materials.
 - > understand importance of equations of state.
 - understand how thermodynamic laws are applied to various cyclic industrial processes.
 - > understand the statistical interpretation of entropy.
- 3. COURSE CONTENT:

(Unit wise distribution of content and number of lectures)

Unit	Торіс	Lectures
1	Equilibrium and non-equilibrium. Systems and	4
	surroundings. Static and quasistatic processes.	
	Thermodynamic properties: Extensive and intensive.	
	Internal energy. Heat. Work. Zeroth law.	
2	First law of thermodynamics. Applications of First Law to closed and flow systems.	6
3	Second Law: Clausius and Kelvin-Planck statement.	4
	Carnot cycle. Entropy. Second law statement in terms of	
	entropy.	
4	Applications of the second law.	3
5	Availability	4
6	Maxwell relationship and thermodynamic property	6
	relationship for materials.	
7	Equations of state.	5
8	Chemical Reactions.	5
9	Thermodynamic cycles of industrial interest.	3
	Total	40

4. READINGS

4.1 TEXT BOOKS:

- 1. An Introduction to Thermodynamics. Y. V. C. Rao. Universities Press.
- 2. Cengel, Y.A. and Boles, M.A., Thermodynamics: An Engineering Approach, McGrawHill, New York, 1988.

5. OUTCOME OF THE COURSE:

After the completion of course, the students will be able to:

- > apply the first law of thermodynamics to processes of industrial scale.
- calculate the feasibility and thermodynamic limit on efficiency imposed by the second law and thereby analyze the effectiveness of a given process.
- > compute thermodynamic properties of the material.
- solve problems related to heat and work exchange which may involve phase change.